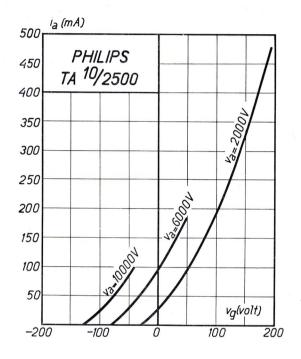
PHILIPS SENDERRÖHRE

 $TA^{10}/_{2500}$


Bei einer Anodenspannung von 10000 Volt kann diese Röhre 2,5 kW abgeben. Die Anodenspannung kann nötigenfalls bis zu 12000 Volt gesteigert werden. Bei 6000 V ist noch ein guter Nutzeffekt möglich.

In untenstehender Tabelle ist für eine Anodenspannung von 10000 Volt die Nutzleistung für verschiedene Nutzeffektwerte angegeben.

Nutzeffekt	40	50	60	70	75	0/0
Zugeführte Leistung	1250	1500	1850	2500	3250	Watt
Nutzleistung	500	750	1100	1750	2500	Watt
Anodenverlust	750	750	750	750	750	Watt

PHILIPS SENDERRÖHRE

 $TA^{10}/_{2500}$

Heizspannung						÷	ŧ,	¥	$v_f = ext{ca. } extbf{14,0} ext{ V}$
Heizstrom									$i_f = \text{ca. } 24.5 \text{ A}$
Sättigungsstrom									$i_s = 1500 \text{ mA}$
Anodenspannung	. <i>.</i>							•	$v_a = 6000 - 12000 \text{ V}$
Anodenverlust					•	٠			$w_a \equiv 750 \; \mathrm{W}$
Anodenverlust geprüft	auf		٠						w_{at} = 1000 W
Verstärkungsfaktor .									g = ca. 80
Durchgriff									$D = 1.25$ $^{0}/_{0}$
Steilheit						•			$S \equiv \text{ca. 3,0 mA/V}$
Innerer Widerstand.									$R_i \equiv {\sf ca.}$ 30000 Ohm
Sättigungsspannung in	der	Gitte	rfläc	he	•				$v_s = 400 \text{ V}$
Grösster Durchmesser									d = 180 mm
Grösste Länge									l = 420 mm